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ABSTRACT

The prediction of dipole sound from the diffraction of turbulence by the
leading edge of a thick foil is made with the Kirchhoff integral for rigid surface
scattering of the stagnation enthalpy. The incident field is determined from a
volume integral and the rigid plane Green function using an equivalent form of
Howe’s (1975) acoustic analogy that is derived in terms of the mean free stream
velocity and the fluctuating up-wash velocity found in Sears’(1941) analysis. A
comparison of the measured and the predicted dipole sound made with the foil
geometry and measured turbulence statistics from Paterson and Amiet (1976)
shows good agreement. The thickness effect is incorporated in the governing
Green function for the foil [Howe (1998a, 2001a)] and serves to exponentially
attenuate the dipole sound pressure spectrum by the product of the convection
wave number and half the maximum section thickness. The dipole sound from a
foil cutting through a mean shear layer is then calculated using an acoustic
analogy where the source has retained the mean shear term. The ratio of the
dipole sound of the mean shear source to the source without mean shear from the
earlier calculation is determined to be proportional to the ratio of the mean shear
to the frequency of the sources. Estimates of the dipole sound with and without
the mean shear source are made for Olsen and Wagner’s (1982) experiment.
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1. Introduction

An airfoil in a turbulent flow generates a net distribution of acoustic dipoles primarily at
the leading and trailing edges. In these regions, the dipole surface normal stresses induced by the
turbulence are not canceled by their images due to the surface curvature [Powell (1960),
Meecham (1965)]. Sears (1941) modeled the incompressible unsteady lifting force associated
with the dipoles by representing the foil as an acoustically compact two-dimensional strip. His
analysis included a trailing edge Kutta condition and showed for fluctuating velocities much
smaller than the free stream velocity that the unsteady lifting force was proportional to the
product of the mean free stream velocity and the fluctuating “up-wash” velocity. The application
of the Kutta condition essentially removed this edge’s contribution to the incompressible part of
the total unsteady lift for reduced frequencies greater than one (based on the chord length)
[Howe (2001Db)).

When the airfoil chord length is acoustically non-compact, the dipole sound produced
from the diffraction of the turbulence by either the leading or trailing edge is subsequently
“back-scattered” by the opposite edge of the foil. Landhal (1961), Adamczyk (1974), Amiet
(1975), and Martinez and Widnall (1980) accounted for the back scattering by the trailing edge
of the leading edge dipole sound for a surface without thickness. Roger, Moreau and Wang
(2002) extended Amiet’s (1975) solution with a second scattering correction term for application
to a trailing edge noise problem. Howe (2001a) constructed a Green function to account for the
multiple back scattering by both edges. The Green function also included the dependence of the
shape of the edge for the diffraction of the incident turbulence [Howe (1975)]. In practice, the
use of a Green function to predict the dipole sound produced by the diffraction of a turbulent
flow requires that the spatial distribution of the incident sources be prescribed and remain frozen
within the diffraction zone. This “rapid distortion” approximation attributes the diffraction to the
Green function and does not account for any interaction between the incident sources and fheir
images [Howe (1999)]. This approximation is satisfactory as long as the turbulence fluctuations
are less than 10% of the free stream velocity [Grace (2001)].

The acoustic analogy of Howe (1975) has been utilized with a shape dependent Green
function to estimate the dipole sound from the diffraction of the sources within turbulent -

boundary layers by trailing edges of various contours [Howe (1998a and b), (1988), (2000)].




Calculations of the shape dependence of the unsteady lift for turbulence encountering the leading

edge have been restricted to numerical models with idealized representations of the flow acoustic
source. The spatial domain formulation of the blade vortex interaction (BVI) models of
Martinez and Rudzynsky (1997) and Grace (2001) predict a reduction in unsteady lift with
increasing frequency for a thick foil relative to a foil without thickness. These trends agree with
the leading edge dipole sound measurements made by Olsen and Wagner (1982) with airfoils of
varying thickness. The BVI calculations are also substantiated by the difference between the
measured dipole sound spectra from a NACA 0012 airfoil and the sound spectra predicted by a
zero thickness theory [Paterson and Amiet (1976, 1977)] as illustrated in Fig. 1.1. Paterson and
Amiet ascribed the discrepancy between their theory and data to the thickness of the foil for
convection wavelengths of the incident turbulence that were smaller than the foil thickness.
Grace (2001) showed that calculations performed in the wave‘ number domain of the unsteady lift
résponse of thick foils to “gusts” incident to the leading edge do not capture the observed
thickness dependence.

The current work uses an acoustic analogy and a shape dependent Green function to
predict the lifting dipole sound from the leading edge diffraction of homogeneous turbulence by
a thick, symmetric foil at a zero angle of attack to the mean flow. The foil thickness, h is
restricted to being acoustically compact, (hk,<<1) while the chord length, ¢, can be greater than
an acoustic wavelength, A= 27/ k,, (ck,>1).

In Section 2, the portion of the Howe (1975) aero-acoustic source that generates the
lifting compoﬁent of the dipole sound is expressed in terms of the mean free stream velocity and
the fluctuating up-wash velocity that also arises in Sears’ (1941) analysis. The source is tailored
to be linear in fluctuating variables, without mean shear [Blake (1986), Howe (1989)] and
spatially homogeneous. The near field of the qﬁadrupole radiation on a rigid plané is then

obtained from the volume integral of this source with the appropriate Green function.
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Figure 1.1 A cbmparison of the measured (points) and predicted far-field dipole

sound (lines). Originally published in “Noise and Surface Pressure
Response of an Airfoil to Incident Turbulence,” by R. W. Paterson and
R. K. Amiet, Journal of Aircraft, Vol. 14, No. 8, pp. 729-736, Fig. 4.
Copyright © 1977 by The American Institute of Aeronautics and
Astronautics, Inc. Reprinted with permission.




In Section 3, the leading edge lifting dipole sound produced by a foil is modeled by the
Kirchhoff integral for rigid surface diffraction of the stagnation enthalpy. The Green function
incorporates the effect of the foil thickness [Howe (1998a)] and the acoustic non-compactness of
the airfoil’s chord length [Howe (2001a)]. The incident surface stagnation enthalpy is expressed
in terms of the mean velocity and the fluctuating up-wash velocity spectrum obtained from
Section 2. This formula, along with the measurements of the incident flow turbulence reported
by Paterson and Amiet (1976, 1977), are used to predict the measured dipole sound for a
NACAO0012 airfoil (#/c=0.12) and the corresponding zero thickness theory (h/c=0) for a variety
of reported flow speeds. '

In Section 4, the acoustic source is tailored to be linear with respect to fluctuating terms
and to contain the mean shear [Kraichnan (1956), Chase (1980), Blake (1986)]. This source is
specified to be homogeneous, and the imposed surface pressure spectrum from the quadrupole
radiation on a rigid plane surface is obtained. The calculated surface pressure spectrum for the
mean shear flow, when combined with the results of Section 2, yield a prediction formula for the
leading edge lifting dipole sound of a thick, acoustically non-compact foil cutting through a
shear layer. Estimates of the measured leading edge dipole sound by Olsen and Wagner (1982)

are made for incident sources with and without the mean shear term. These estimates establish

the frequency below which the mean shear source dominates the source without mean shear.




2. Wall Stagnation Enthalpy Spectrum from Homogeneous Turbulence Without Mean
Shear

The stagnation enthalpy spectrum, B, imposed on a rigid plane (y,, y,= 0, ys) will be
calculated from the quadrupole radiation of a spatially homogeneous turbulence field as
illustrated in Fig. 2.1. The turbulent flow is specified to have no mean‘shear so that the resultant
wall stagnation enthalpy spectrum will serve as the incident field that will be used in Section 3 to
calculate the leading edge noise from homogeneous turbulence in the absence of mean shear.
The radiating stagnation enthalpy, B, is described by the acoustic analogy of Howe (1975) for

vortex sound

2
V’B—%:—V-(QXU) , (2.1)

where Q and U represent respectively, the sum of the mean and fluctuating vorticity and
velocity. The stagnation enthalpy is expressed in terms of the acoustic pressure, p, the fluid

density, p, and the fluctuating velocity, u:
B=[dp/p+0.5u* . 2.2)

The component of the hydro-acoustic source that contributes to the lifting dipoles with
axes aligned normal to the free streamlines [Blake (1986), Howe (1989)] shall be used to model

the incident source

V-@QxU)= 5‘;—(9'3 XU)(y,t) . (2.3)

2

The primed (') variables are in the time domain, and the subscripts 1, 2 and 3 denote
respectively the streamwise, spanwise, and surface normal directions. The source is linear with

respect to the fluctuating terms, and only the spanwise vorticity, Q,, contains the fluctuating
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components of the source. The subsequent planar wave number spectrum of the near field
radiation is given by Blake (1986) '

B(k@)= (2;)2 IIIVdV(y)ayiz(Q3 xU,)(3,0) Isf d*x,, e—kx-r——k"- : 2.4)

where the unprimed variables have been Fourier transformed from time to frequency and
ki3 = (ky, k3), x,3 = (x,, %;), & x,,y=dx,dx;. When the in-plane Fourier transform of the Green

function

85 Jikr iny(k)
..1_ H i__e""u"ndel'3 =i € PRLELE @2.5)
2 r y(k)

is substituted into Eq. (2.4), the stagnation enthalpy wave number spectrum becomes

iyyy (k)
€ LT

Blem)= "0 ’

1)2 J'J‘LdV(y)gaz—(Q3 XU, )i

2r (2.6)

where

1= K- K-8

and k, =ac,, is the acoustic wave number. Rearranging the terms of Eq. (2.6),

iy, ¥(k)

k)

1

Bla)= s

o, O ,
HI LAy, d’y, e g(ﬂs XU (3, Y,, Y3, 0)i 2.7)
2 .

while taking the Fourier transform of the source variables with respect to the in-plane

coordinates (denoted by the over bar):




— t 1 ik
QU )y, ® =[] d2— ™% QU)31,7273,0) (2.8)

(2m)’

and upon substitution of Eq. (2.8) into Eq. (2.7), in the absence of mean shear, yields the

following expression for the wall stagnation enthalpy wave number spectrum:

a — iyyy(k)

B(k,w)= {dyZUl Z1Q,(k,y,0))i 0 2.9)

v,
Howe’s (1975) acoustic source in Eq. (2.9) can be expressed in terms of the fluctuating

up-wash velocity, u,, and free stream velocity, U, . The solenoidal velocity wave number

spectrum can be expressed in terms of the vorticity wave number spectrum [Howe (1998a]:

k) = ik x Q(k) /1 k P

|k P=kE+ 2+ (2.10)
The up-wash veldcity wave number spectrum becomes:

f, (k)= i(kxQ,(Kk)), /| kP . (2.11)

Rearranging Eq. (2.11),

2 A

—kl— Ui, (k)= —i(Q,(k)x U,), (2.12)
and taking the inverse Fourier transform Eq. (2.12) with respect to k,,

Tdkze"m (illli—lelﬁz(kl,kz,ka,w)) =Q, k.Y, ky ), (2.13)

- 1




and then substituting Eq. (2.13) into Eq. (2.9), yields the wall stagnation enthalpy wave number
spectrum:

[N S 15 arth
B(k,0) = I dy, —{ j dl,e™ (i—U, it (k,, k2,k3,w))}z (2.19)
0 2 = k, nk)
In the absence of mean shear, Eq. (2.14) becomes:
iyzr(k) g Ik |2
B(k,w)= jdyzt 5 Jdk (6 == U, oy ey @)}
vk k, (2.15)
The complex conjugate (*) of the wall stagnation enthalpy,
e ) k Ik P
B'(K0)= Idyz(—l) {Idkz(—tkz)e" P iU (KK K, 0) 016

with Eq. (2.15) enables the wall stagnation enthalpy wave number spectrum to be determined
@, (k,0)5(k—k Yo (w-w')=< B(k,w)B" (k',0')> (2.17)

where the angle parentheses (< >) signify an ensemble average. Substituting Eqgs. (2.15) and

(2.16) into (2.17) gives the wall stagnation enthalpy wave number spectrum

iy Yk »-iviy” (k)

400 oo +oo ) 2
@, (k) = [ dy, [ dyi [ diem oy 7’;22-(192 + R4, , (k500 (2.18)
0 0 —oo

| (k) P
where the up-wash power spectrum is also obtained as in Eq. (2.17):
@, . (k,w)5(k -k )60 -0)=< i, (k,0)i, (k,0)> . (2.19)

10




In order to facilitate the integration of Eq. (2.18), the up-wash wave number frequency spectrum

is expressed in a separable form,
D, (ky ko ko 0) =@, (@), (k; )¢, (k3 )P (ks) (2.20)

where all of the wave number spectra are normalized accordingly:
| Idkj¢,-(k,-)=l- | e

The streamwise (1) and vertical (2) wave number spectra will use Corcos’(1963) representation:

Lin
1+ 1 (k' - k)

Lim

27 129U /o, L,=14U,l0. 2.22
1+ 2k? h=9U. 2 ‘ @22

¢ (k)= 3@, (ky) =

Referring to Fig. 2.1, the convection wave number k= -a/U, for w>0. The sign of the

convection velocity has no bearing on the value of the radiated noise power spectrum. This will

- become apparent since all of the subsequent expressions for the incident surface pressure

spectrum involve even powers of the streamwise wave number, k;. The spanwise (3) wave

number spectrum will be approximated with a Gaussian form used by Blake (1971):

e—(k3l3 12

k)=L,5—;1,=14U, /0 . 2.23
¢3( 3) 3 2\/; 3 ) ( )

Substituting Eqgs. (2.22)vinto Eq. (2.18) and integrating Eq. (2.18) with respect to k, yields:

oy ) q
Ik P Kw
(LILT (€O -1+ QUL + 2022 — KT 2L — L) + (2.24)
2=1+ K0 + KLY 78(y, - )b = 2(-1+ KL + L) (3, = y)b'
+278" (v, = y)b"1}

4

400 +oo
@, (k)= | dy, | dy U2, (ko))
- ] 0

11




where 6" is the nth order derivative of the delta function. The relationship between the
convolution of the nth order derivative of the delta function, with a function, f, and the nth order
derivative of fis given in Eq. (2.25) [Lighthill (1958)]:

J 49,508 0, =y =1y £1(y,)  0<y, <eo. (2.25)
0

If the integral scale is much smaller than the spatial extent of the turbulence, then the vertical (2)

correlation function can be represented as a product of the integral scale and the delta function:
e = 18y, - y,)3 L, = 14U, Io =14k . (2.26)

Substituting Eq. (2.26) into the expression for the wall stagnation enthalpy wave number
spectrum [Eq. (2.24)] yields;

oo , eV ()
Pu 0= [, [y 000, byt
(LIE 6y, = y )b (<14 2020 + 20212 — kI —2K2K2L — k2 ym) + (2.27)
21+ Kk + LY m8(y, ~ y)B° = 2-1+ KL + KS1)78 (3, — ;)15
+278" (3, = y)5’1} .

The forms of the wave number spectra in Eqgs. (2.22) and (2.23) yield peak values for the
streamwise and spanwise wave number spectra at k;= k, =-,+@/U, and k,=0, respectively. For

ky>k >k, the exponential phasor in Eq. (2.27) may be approximated as:
Integrating Eq. (2.27) with respect to y,, |

12




. T 172 e ]
D@y (k3 0) = . dy U@, (k,;0)] WE .

=1+ k212 + K22V S - 2(=1+ K21 + K305 mAk( L +2m16Kk(1;°1)

and then integrating Eq. (2.28) with respect to y, yields the wall stagnation enthalpy frequency

wave number spectrum:

1 1 1
@, (k,,0)=U®, , (k;© :
BB( 13 ) 1 uzuz( 13 )]Iy(k) l2 kl27t 2k1
(LI (1, (14 2k212 + 2K205 ke 1y —2k7k; 15 — k3 1 )mm) + (2.29)

V=1+k212 + K22 ;6 = 21+ K25 + k315 ) maki L + 2116k 1,7 1)

The wall stagnation enthalpy frequency spectrum is determined by integrating Eq. (2.29)
with respect to k, and k;. Using approximate forms of the wave number spectra of the up-wash
velocity facilitates the integration. Accordingly, since the streamwise wave number spectrum of
the up-wash velocity [Eq. (2.22)] is peaked at the convection ridge, and since the rest of the
integrand, denoted by f(k; k5), of Eq. (2.29) is varying slowly in this region, the streamwise wave

~ number spectrum shall be represented as a delta function. Thus:

[ s (k) (k) = [ s (k) k) = f(Koks) - (2.30)

The wall stagnation enthalpy becomes:

Le®bD' 1 1 1
Wr K +kKm 2k,

{lz[lj(l2 (~14 2820 + 255 ~ k(1 — 2K2K2L — k;‘l;)n) + (2.31)
2=1+ k2L + K2EY2 1 = 2(-1+ K21 + S ) mAk: L +2m16k; 7]}

q)BB (kc’k3 ,(O) = Ulz(puzuz (w)

13




Integration of the wall stagnation enthalpy wave number spectrum with respect to k, yields the
wall point stagnation enthalpy frequency spectrum. This involves three types of integrals, I (k,);
n=0,2,4, where

T k%k: Letbrd’
LK+ 24w

L(k,)= dk;;n=024 . (2.32)

Approximating the error function, Erf(x)~x for x<1, gives the first integral, I, [n=0; Eq. (2.32)]
I, =—e*kb '2>’1,JE(-1+ Erf(1/2,/k2L ])k, 12=06. (2.33)
The second integral, I, [n=2; Eq. (2.32)] yields:

= S (2R - 0 VR 4 BT B2 D)) . 23
3

Numerically evaluating I, gives:

[ = 2112136112V +1.36(1.12)*V - 0.56
2 2-1.12- k2

= 0.4k’ . (2.35)

The third integral, I, [n=4; Eq. (2.32)], becomes:

P S ki (k) T+ e OV (28) T B (2R )

4 z(kc_z)su(kclsf

(2.36)

This simplifies to

14




— -1 ' 2
i e Ak T RN ) R 056 @
(4 c“3

Taking

Kl =1.i2

4
LIZK 2012 - 136(1.12) V7 +1.36(1.12) 7 -0.56],

SRETELY

1,=1.19k". (2.38)

Substituting the three integrals, I, I,, I, into the expression for the point stagnation enthalpy

gives

Q@)= U'®,, (@ )ug{(( o _[-0.6+ 2(1.12)%0.6+2(0.4)(1.12)* — (1.12)°0.6
-2(1.12)*0.4-1.19(1.12)*17)
+(1217;)6[—O.6+0.6(1.12)2+0.4(1.12)2]2 (2.39)
_ 8w 12 (4.1 12 27E16-0.6

(1.12)4[ 0.6+0.6-(1.12)*+0.4-(1.12) ]+———-—(1.12)2 ;.

15




The component of the wall stagnation enthalpy power spectrum that contributes to the lifting

dipole sound expressed in terms of the mean flow velocity and the fluctuating up-wash power

spectrum becomes:

D,5(0)= 6.4U/D,, (@) . (2.40)
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3. Dipole Sound from a Thick, Symmetric Foil in a Turbulent Flow Without Mean Shear.

In Section 2, the surface stagnation enthalpy, B; was calculated on a rigid plane due to the
near field acoustic radiation from the component of Howe’s (1975) acoustic source that gives
rise to the lifting components of the dipoles. The source was specified to be without mean shear
and was expressed in terms of the free stream velocity and the fluctuating up-wash velocity. In
this section, the dipole sound, p,,; , due to the diffraction of these sources by the leading edge of
a thick, symmetric foil will be calculated using a rigid surface Green function, G(x,y,w) and

incident “blocked” surface stagnation enthalpy, B , that satisfies the Kirchhoff equation

B (roy=—7 [[ EO . 05D G(r,y,@)dS(y) » G.D)

where B, is the far field radiated stagnation enthalpy and y, is normal to the surface and is
directed into the fluid. At low flow Mach numbers, M, =U/c,<1, the radiated stagnation
enthalpy, B,,,, is related to the acoustic pressure in the far field, p,,,, [Howe (1978)]

Praa =Byaa - pI1+ M (x,/R)) , (3.2)

where Mc(xl/R)=M or is the flow Mach number component in the observer direction. The

acoustic pressure can then be determined in the far field from Egs. (3.1) and (3.2):

—_ P dB(y,,y,=0,y,,0)
P =5 P [J - G(x,y,0)dS(y) . (33)

The coordinates for the radiation field are illustrated for a foil of thickness, h, chord
length, ¢, and span, L, in Fig. 3.1. The foil encounters homogeneous turbulence with convection
velocity, U,=-U,. The cross section of the foil [Fig. 3.2(a)] shows that the turbulence flows past
both sides of the leading edgé of the foil. The half-plane “slab” scattering geometry that is used
to model the leading edge diffraction of the incident stagnation enthalpy [Eq. (3.3)] is given in
Fig. 3.2(b). The incident stagnation enthalpy is imposed by the turbulence on both sides of the

17
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foil. A leading edge Kutta condition is not applied and the vortical sources are prescribed to
follow the potential flow streamlines associated with the foil geometry and the free stream
velocity indicated in the figures. The surface of the foil is defined toA have no discontinuities in
the surface curvature. Even though the sources accelerate due to the curvature of the potential
streamlines in the vicinity of the leading edge, it will still be assumed that the incident source
wave number spectrum is peaked at the convection ridge associated with the velocity upstream
of the leading edge.

The dipole sound spectrum due to the diffraction of the incident turbulence by the leading
edge shall be modeled using a surface pressure scattering formulation with Howe’s (1998a and
b) trailing edge Green function for a semi-infinite hard surface with thickness, 4 and rounded

edge,

@Lsin’(6/2)siny 7

O (x,0) =
P ', IxP &k

e UInT (W) (w) /7 3.4)

where @3 (x,w) and @57 (w) denote respectively the radiated acoustic pressure spectrum and
the incident surface pressure spectrum. The right hand side of the equation has been multiplied
by a factor of two in order to account for the two-sided turbulent flow around the airfoil’s
leading edge. Referring to Eq. (2.27), incident sources at the convection wave number,

k.= @/U,, and location, y,, normal to the surface have weighted contributions to the surface

pressure spectrum that are exponentially attenuated by their product:

e 20 (3.5)
The thickness correction, in Eq. (3.4),
&) (3.6)

suggests that the sound generated by a foil with thickness, 4, in a spatially homogeneous
turbulence field can be alternatively represented by a foil with zero thickness where the incident
sources are off-set from the surface in the surface normal direction by a distance equal to one

quarter of the maximum section thickness, ly,I> h/4.
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Substituting Eq. (2.40) that relates the mean velocity and upwash vélocity to the wall
pressure stagnation enthalpy and Eq. (3.5) that gives the Mach number correction into Eq. (3.6)
yields the leading edge dipole sound pressure spectrum due to the diffraction of the

homogeneous turbulence:

.2 .
(I);a: (x,(O) _ wLsin (0/2) sy le_m/(gyc)6.4p2U12¢

- (1+M0R)27r2c TR 2(co)l3(a))/ﬂ: . 3.7

Uyt

The multiple “back-scattering” of the acoustic waves generated by the leading edge
diffraction of the turbulence by the edges of the foil occur when the chord length is finite but
acoustically non-compact. Howe’s (2001a) normalized Green function, G, shall be used to
model this effect. This yields an equation for the dipole sound from the thick but acoustically
non-compact airfoil in terms of the mean velocity and the up-wash velocity spectrum and

spanwise integral scale:

. 2 ) .
| Gy (k csin(y)) ° @Lsin”(6/2)siny WG, 4p2U12 (Du2u2 (@)L (@)/() - (3.8)

O™ (x,w) =
pr (5,0) A+ My)? nc,\xP K,

The normalized Green function is given by

GLE(x’y’w)+GTE('x’y’w) (3 9)

G;(x,y,w)=1+
’ Gl/ZpIane (‘x’ y’a))

where Gz, Grz, Gipptane représent respectively, the contributions from the leading edge, the
trailing edge and the governing Green function for the “half- slab” diffracting surface used in Eq.

(3.7). These are given by Howe (2001) with [Fig. (3.1)] 6=y=mn/2:

ik, (ix' 1)

G x,9,0) = —‘P*(}’)e :
(B 0) = T o | x 1[1+ **¢ /(27ik,c)]

Fl2\kecos'(n/a)im),  (3.10)
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JE sinm(w)(p'(y) eik,ﬂx'l)

G (x,y,0) = :
0000 = T+ €7 ok )]

F(2\/kac cosX(rr/4) /71:) . (3.11)

F(x) = fx) +ig(x) are the Fresnel integral auxiliary functions whose approximations are given by:

1+0926x 0 1
2+1792x+3.104x> 8 T 21 414224 3.492x° 4 6.675°

fx)= (3.12)

The predicted dipole sound from Eq. (3.8) shall be compared with the measured sound
reported by Paterson and Amiet (1976) in Fig. 1.1. Accordingly, the reported up-wash spectrum
will use the von Karman formulation for isotropic turbulence with an integral scale, A= 0.03 m,

and a turbulence intensity, u* /U2 = 0.045,

_ Faf [1+-§-(kc43,, 13}

P, (@)= ¥ (3.13)
270 [1+ (.44, 13716
The spanwise integral scale, /,(@) will also use the von Karman formulation,
42k 13)?
L() =§[ ra/ 3’]21, Sl , (3.14)
3LT(S/6)] 7 [3+8(4A4,k, /3" 11+ (44 k, /3)?

yielding the same result as the Corcos model or the Gaussian model for frequencies above
300 Hz. T is the Gamma function with I'(1/3)=2.68, and I'(5/6)=1.13.

The airfoil chord length is c= 0.23 m, the span is L=0.53 m. The thickness (k) to chord
(c) ratio of the NACA foil is h/c=0.12. The dipole sound in Fig. 1.1 was measured at a distance
x,=2.25 m from the mid-chord of the foil. The Mach number correction in Eq. (3.2) becomes,
M;=0.05 M, and @=y=m/2. In Fig. 3.3 for h/c =0 and in Fig. 3.4 for h/c =0.12, the predicted
dipole sound spectra are plotted using Eq. (3.8) at velocities of 40m/s, 60 m/s, 90 m/s and 120
m/s. These predictions are compared at each velocity to the measured dipole sound from
Paterson and Amiet (1976, 1977).
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4. Dipole Sound From a Thick, Symmetric Foil in a Turbulent Flow With Mean Shear.

In Section 1, the turbulence quadrupole source was specified to be without mean shear.
These types of turbulent flows are typically generated by turbulent wake flows and jet induced
shear layers that have had sufficient time to diffuse or by the outer portion of a turbulent
boundary layer (TBL) flow. Conversely, wake and jet flows have regions of high mean shear
before sufficient diffusion occurs, as do turbulent flows near their bounding surfaces. The
portion of the acoustic source that contains the méan shear—-turbulent (MS-T) source has been
used to describe the quadrupole pressure radiation from turbulent shear flows that occur in TBL
flows [Kraichnan (1956), Chase (1980), Blake (1986)] and jets [Moon (1975)]. In this section,
the dipole sound due to a MS-T source incident to the leading edge of a thick foil will be
modeled.

Referring to Fig. 4.1(a), a foil of thickness, k, and chord length, ¢, encounters a turbulent
shear layer, dU,(y,)/dy,=const., where the shear layer is thicker than the foil thickness. The force
induced by the diffraction of the turbulent shear layer by the leading edge is formulated as a
Kirchhoff integral for the scattering of the incident surface pressure by a “semi-infinite slab”
with thickness, 4, and rounded leading edge [Fig. 4.1(b)]. . The modeling apprbach is identical to -
that described in Sections 2 and 3. In this section, the wall pressure spectrum imposed on a rigid
plane will be calculated from the quadrupole radiation of the aero-acoustic source.that has been
specialized to be linear in fluctuating terms and to contain mean shear. This pressure spectrum
can be used with the results of Section 2 to calculate the leading edge noise for a thick foil
cutting through a shear layer that will be specialized to be spatially homogeneous.

At low Mach numbers, the acoustic pressure, p, generated by the mean shear-turbulence

(MS-T) source is described by the following acoustic analogy:

2 .
1 ap—Vzp z2p _a__U_lﬁ 4.1)

ot %, I
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The pressure, p, and the fluctuating up-wash velocity, u,, are in the time domain and are denoted
by bold face type. The planar wave number spectrum of the wall pressure that is radiated by the

acoustic source in Eq. (4.1) becomes

_L_[[] aviy2p, 22 X,000) [f 4 7 Y

k.0
plba) = > o 57

@n)?

where the pressure, p, and up-wash velocity, u,, have been Fourier transformed to the frequency

domain and are no longer in bold face type.

The planar Fourier transform of the Green Function is given by

1 eor e ®
o H —e Mgy =i—e a3 s 4.3)
T r k)

where

wk) = w/kj —k2—k? | (4.4)

and k, = @Vc,, ki 3=(ky,ks) , Y1:5= 1Y3)s X105= (X1,%3) d*x,,;=dx,dx,. Substituting Eq. (4.3) into the
Eq. (4.2),

aU au elyzY(k)

o,y PO

dy1 \ e s 2p (4.5)

kw)=
p(w(

and rearranging the terms of the integrand gives the following expression for the wall pressure

wave number spectrum:

T aU, el o ou2 '
plk,w) = dy,2p—i MaNs —Z(y,,7,,Y5,0) . 4.6
@r ) yZJ: P ) yﬂ.[.[_w ayl (1525 Y3,0) (4.6)
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The Fourier transform of the fluctuating up-wash velocity with respect to the in-plane

coordinates is denoted by an over bar

e MM (91,9, Y5,0) @4.7)

_u:(kl,p)’z’w): H dz)’l,s

1
(2m)’

and Fourier transform of the derivative of the up-wash velocity is:

- (&t : l —ik 2 3au. 1) ’
tkluz(lq.a,yz,w)=f£ d’y,,a(—z;t?e s Ao Oy 8);; Y ®) (4.8)

Substituting Eq. (4.8) into Eq. (4.6) determines the wall pressure wavenumber spectrum

i oU . iy,¥(k) L=
plk,w) = ] dy,2p 2L ik (K, v, ks, 00) 4.9)
y2=0 2 'Y(k)

and the complex conjugate of the wall pressure spectrum becomes:

R ' -iysy" (k)
p'(k,a))= J‘dyzzanl e

> (i) _ ik (K, y 2,k 0,0) . (4.10)
y2=0

The wall pressure power spectrum is then determined from the ensemble average of the pressure

and its complex conjugate:

D, (k,)8(k - k)3(w- ) =< p(k,0)p" (K, @) > 4.11)

yielding the wall pressure wave number frequency spectrum :

T . UG, , R OS]
@ ( ,w)=4 2 d d 1 ’ 2 1\277, @uu( \YasY ,w)]-____'
PP k1-3 p -([ Y2 :!. 32 ay2 @,2 ™ 2y k1.3 2' 2 ',Y(k) |2

(4.12)
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The following separable form to the up-wash wave number spectrum,
@, ,, (kY3 Yok @) = B(@)0, (k)R (¥2:7,)93 (k) (4.13)

will facilitate the integration of Eq. (4.12). The wave number spectra are normalized
J. dk;;(k;)=1 4.14)

and the streamwise (1) and spanwise (3) wave number spectra will use Corcos’ (1963) and a

Gaussian form respectively:

_ym N
¢1(kl)——-—-'—1+42(k12_k3), Os(k)=h— T

L, =14U, /0. (4.15)
The shear layer will be considered to be much thicker than the airfoil. In this context,

this model will assume that the surface normal correlation length, L,=1.4U, /@, is much smaller

than the thickness of the shear layer. The surface normal correlation function will accordingly be

taken to be spatially homogeneous with correlation length [,
Ry (32:72,0) = 6y, ~ y)h (@) . (4.16)
It is specified that the mean shear does not change significantly over the correlation

length, [,. Upon insertion of Eqgs. (4.13), (4.15) and (4.16) into Eq. (4.12) and integrating with

respect to y,, the wall pressure wavenumber spectrum becomes:

'}’27’(")"}’27*(")

(kIS’w) 4p’ jd 2k (a%:Z)T(Duzuz(m)ﬂ(kl)‘Pa( 3)b( ) |7( )l . 4.17)
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The wall pressure frequency spectrum is determined by integrating over k, and k,.
Integration over the streamwise wave number, k,, is facilitated by assuming that the correlation
function in the streamwise direction is peaked at the convection ridge, k, =k.. The streamwise

wavenumber spectrum can be approximated by a delta function

¢ (k) =&k —k.), (4.18)
yielding

@2tk -ivay" (ko)

W , (4.19)

Jaxe, ki y=4p? | dyzk{aUa;y 2))2 e (@0, () (@)
0 2

where

Wk) = k2 k2= k2 ~i[k2+ K2 . (4.20)
Substitution of Eq. (4.20) into (4.19) gives the spanwise wall pressure wave number spectrum

-y2[2 k +k3]

4.21
2+k? (4.21)

®,, (k) =4p? | dyzk{a”ay‘”))]%ﬂ, (@), (k) (@)

(.‘

The spanwise wave number spectrum is peaked at k,=0. This allows the spanwise wave number

correlation coefficient to be approximated by a delta function:
9,(k,) = &(k,) . 4.22)

Insertion of Eq. (4.22) into (4.21) yields Eq. (4.23):

3y 2
I dk,® o (ky,w)=4 p2 j dyz[aué)fyz)]] gt (a))e" 22k | L () J dk, 6(}:)’; . (4.23)
0

2 c 3
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Integration over the spanwise wave number yields the wall pressure frequency spectrum,

o, @)=2p"] dy{a—[i(y—z)}zq)% (@)eH L(w) (4.24)

0 2

and integrating with respect to y, yields the point pressure spectrum for the mean shear source:

®, (@)= pZ[ﬁ%y(_%qunm (@)K L(@) . (4.25)

The ratio of the point pressure spectrum from the mean shear-turbulence (MS-T) source

[Eq. (4.25)] to the source without mean shear (T-T) [Eq. (2.39)] is:

MS-T .
Tp @ 10, 1 (4.26)
o) T (@) |y, 460

This defines a cut-off frequency below which the dipole sound from the MS-T source should

dominate the dipole sound from the source without mean shear (T-T). |
The leading edge dipole sound is determined by multiplying the ratio of the MS-T wall

pressure spectrum to the T-T spectrum [Eq. (4.26)] by the dipole sound due to the T-T source

[Eq. (3.8)]:

|G, (kesin) P oLsin®(0/2)siny & _wwicw,)

(I)rad MS-T (x,w) ~
i 1+ M)’ nc,IxP K,

(427)

ou, 1 -
[8}'2 4660}26 P Ul wuytty (@) 3(0))/(71')

The dipole sound measurements made by Olsen and Wagner (1982) with airfoils in the

shear layer of a 10 cm diameter round jet will be predicted using estimates of the incident
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-sources with and without mean shear from equations [Eq. (4.27)] and [Eq. (3.8)] respectively.
The chord length, c, of the foil was 2.54 cm. It will be assumed that the wetted span of the
airfoil, L, was equal to the jet diameter. The airfoil thickness to chord ratio ranged from
0.032 < h/c <0.375. The flow speed incident to the leading edge of the foil was 94 m/s and the
integral scale was [=1.6 cm. The fluctuating velocity was 25% of the mean velocity incident to
the leading edge of the foil. The mean shear, dU,/dy,=1723/sec was estimated from the mean
velocity measurements of Wygnanski and Fiedler (1965) for a round self-similar jet. The sound
pressure levels in one-third octave frequency bandwidths were measured at roughly y, = 4.57 m
with 8= y= /2 from Fig. 3.1. The leading edge of the foil was four jet diameters downstream of
the lip of the jet.

The predicted narrow band sound pressure levels in dB re 20 micro Pa/Hz for both
sources are plotted in Fig. 4.2 for a flow speed of 94 m/s. The predicted dipole sound spectrum
from the mean shear source dominates below 100Hz. The dipole sound without the mean shear
source is predicted for foil thickness-to-chord ratios of h/c= 0.032 and 0.375. Above 1 kHz, the
thickness effect starts to attenuate the predicted dipole s.ound.

Figure 4.3 shows the measured dipole sound from Olsen and Wagner (1982, Fig. 2a) in
one -third octave bandwidths. The thickness theory accounts for the relative differences in the
dipole sound for the foils as a function of thickness. The dipole sound is not measured below
200 Hz where the predicted mean shear dipole sound should dominate. This may explain why
the theory used by Olsen and Wagner (1982) was able to predict the leading edge noise for the
thin airfoil without taking into account the mean shear source. The predictions made in Fig. 4.2
violate the “rapid distortion” approximation since the turbulence levels are above 10%. The
mean shear levels were estimated assuming self-similarity of the mean velocity profiles even for

distances downstream of the jet exit as close as four jet diameters.
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Figure 4.3 Measured dipole sound at 94 m/s in one-third octave bands, dB re 20 micro Pa
(Fig. 2a, Olsen and Wagner, AIAA 82-4068).
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5. Conclusions

The dipole sound due to the diffraction of homogeneous turbulence by the leading edge
of a thick foil was »calculated using the Kirchhoff surface integral with a rigid surface Green
function. The Green function accounted for the foil thickness and the acoustic back scattering
associated with the acoustically non-compact cﬁord length. The surface stagnation enthalpy was
calculated with a volume integral incorporating the rigid plane Green function and an equivalent
form of thé lifting dipole component of Howe’s (1975) acoustic source that was derived in terms
of the mean free stream velocity and the fluctuating up-wash velocity of Sears’ (1941) analysis.
The derivation of the equivalent form of the source required that the velocity field be solenoidal.

- An estimate of the dipole radiation was made using the foil geometry and measured grid-
- generated turbulence statistics from Paterson and Amiet (1976, 1977). The predictions show
good agreement with the measured dipole sound. This establishes that the square of the

magnitude of Sears’ function, S(k;,h), for a foil of thickness, h, can be expressed as
IS(k,, 1)1 = ISk exp[-k,h/2], a.1H

where S(k,) is Sears’ function with h=0.

The modeling approach requires that the incident sources obey the “rapid distortion”
approximation. This requirement may be violated when the turbulence fluctuations are too large
relative to the free stream geometry. When this occurs, the sources may interact with each other
or their images. The RMS turbulence fluctuations of the validation data of Paterson and Amiet
(1976, 1977) were approximately 4.5% of the free stream. This is well within the limits (less
than 10%) established by Grace (2001) to ensure that the sources do not deviate from the
potential flow. Leading edge flow separation from a sharp edge may also cause the trajectories
of the incident sources to deviate sufficiently from that modeled by the Green function. This
modeling approach also required the use of the frozen flow approximation that is strictly
applicable to cénstant velocity flows in the vicinity of the diffraction zones. The success of the
dipole sound predictions suggests that the frozen flow approximation may be applied to steady
flows whose potential flow streamlines exhibit curvature and consequential acceleration of the

sources around an edge. Extensions of the modeling approach can be made to predict the affect
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of foil camber on the dipole sound by incorporating this effect into the velocity potential of the
~ Green function via a conformal mapping, as demonstrated by Martinez and Rudzynsky (1997)
for the incompressible problem.

The dipole sound from a foil cutting through a mean shear layer was obtained using the
acoustic source that was tailored for mean shear sources. The incident surface pressure spectrum
due to this source that is imposed on a rigid plane was calculated. The ratio of the dipole sound
of the mean shear source to the source without mean shear was determined to be proportional to
the square of the ratio of the mean shear to the frequency of the sources. This establishes a
critical frequency below which the dipole sound from the mean shear should dominate and above
which the dipole sound from the source without mean shear should dominate. This result has
been reported for the frequency dependence of the mean shear and non-mean shear quadrupole
sources associated with jet radiation (e.g., Moon (1975)).

Estimates of the measured leading edge dipole sound by Olsen and Wagner (1982) were
made with and without the mean shear incident sources. The frequency below which the mean
shear source was estimated to dominate was 100Hz. The measured dipole sound was made for
frequencies above 200 Hz. This may explain why the predicted dipole sound made by Olsen and
Wagner (1982) agreed with the measurements even though they did not take into account the

mean shear source.
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